Probabilistic Models for Integration Error
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Overview

This paper studied the numerical computa-
tion of integrals

|, f(x) pldz)

representing estimates or predictions, over the
output f(xz) of a computational model with re-

spect to a distribution p(dx) over uncertain in-

puts x to the model. For the functional cardiac
models that motivated this work, neither f nor
p possess a closed-form and evaluation of ei-
ther requires =~ 100 CPU hours, precluding stan-
dard numerical integration methods.

Motivation

Recall that the standard Monte Carlo confidence in-
terval for an integral

(f -t d e ()

can fail in an arbitrarily dramatic manner when n is
small [1]:
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~igure 1:Consider drawing samples {x;}"_, from p(dz) and com-

outing an (asymptotic) 50% confidence interval (Eqn. 1) for
[ f(x)p(dx) based on the data {f(x;)}",. The figure shows
that it is trivial to construct an example for which Eqn. 1 is

severely over-confident.

Building Blocks

Our aim is to use additional prior information in the
construction of the confidence interval.
Gaussian Process f ~ GP(m, k)

(] ] s A

\Los ] L * 1)

Dirichlet Process P ~ DP(a, B,)
P(S51),...,P(S,)] ~ Dir(aPy(S1),...,aPy(S,))

for a partition Q = U;_,S;.

DP Mixture Model p ~ DPMM(v, a, F;)

p(de) = [ v(de; ¢)P(de)
where e.g. 1(x; ¢) is the p.d.f. for N(¢1, ¢9).

fla) |~

Compatible (k, ) Pairs

Result from Bayesian quadrature |2|:

[ fdp | p, (s, @)}y ~ N(p, 02)

where (e.g.) the mean can be expressed:
- —1 r

Stick-breaking for DPMM 3]
pldz) = 2 wildz; ¢))
i

where the w; and ¢; can be sampled.
Thus required to have a closed-form for the integral:

Method in a Nutshell

Take independent priors f ~ GP(m, k) a Gaussian process and p ~ DPMM(«, a, P,) a Dirich-

let process mixture model.

Then form a posterior (f,p)|{(x;, f(x;))}, and extract the marginal

[ fdp |{(xi, f(x:))}",. The latter provides our model for integration error, which contracts at O(n=/%).

Mathematical Section

Let ‘H denote the RKHS with kernel k. Suppose:
® f belongs to H and £ is bounded on €2 x ().

Let P denote the true mixing distribution. Suppose:

o(dz; o) = N(dz; 1, @2).
® Py has compact support supp(Fy) C R x (o,7)
for some fixed g, € (0, 00).

® b, has positive, continuous density on a rectangle
R, st. supp(Py) C RCR X |o,7].

0 Py({(¢1, 2) : || > 1}) < cexp(—t]°) for
some v,0 > 0and V> 0.

Denote with P, the posterior marginal over [ fdp
given {(zi, f(xi)) }it1-

Then for all 6 > 0, P,,[(po(fo) — 9, po(fo) + 9)] =
1 — Op(n="4*¢) where the constant € > 0 can be
arbitrarily small.

Application to a Cardiac Model
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Figure 2:Computational cardiac model. This multi-scale, multi-

physics model contains 10 input parameters which, for assess-

ment purposes, must be integrated out.

Conclusion

The use of prior information can help to avoid over-
confidence in numerical estimation of an integral.
However, the performance of our Dirichlet process
mixture Bayesian quadrature (DPMBQ) method de-
pends critically on the appropriateness of the prior
model.

References

1] A O'Hagan.
Monte Carlo is Fundamentally Unsound.
Journal of the Royal Statistical Society, Series D, 36(2/3):247-249,
1987.
2] A O'Hagan.
Bayes—Hermite Quadrature.
Journal of Statistical Planning and Inference, 29(3):245-260, 1991.

3] J Sethuraman.
A Constructive Definition of Dirichlet Priors.
Statistica Sinica, 4(2):639-650, 1994.

Acknowledgements

CJO and MG were supported by the Lloyds Register Foun-
dation Programme on Data-Centric Engineering. SN was
supported by an EPSRC Intermediate Career Fellowship.
FXB was supported by the EPSRC grant [EP/L016710/1].
MG was supported by the EPSRC grant [EP/J016934/1,
EP/K034154/1|, an EPSRC Established Career Fellowship,
the EU grant |[EU/259348] and a Royal Society Wolfson Re-
search Merit Award. This material was based upon work par-
tially supported by the National Science Foundation (NSF) un-
der Grant DMS-1127914 to the Statistical and Applied Mathe-
matical Sciences Institute. Opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

= Web: oates.work

= Email: chris.oates@ncl.ac.uk

=/ Newcastle The

University In é!?&tguring



http://oates.work
mailto:chris.oates@ncl.ac.uk

