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Overview

This paper studied the numerical computa-
tion of integrals∫

Ω
f (x) p(dx)

representing estimates or predictions, over the
output f (x) of a computational model with re-
spect to a distribution p(dx) over uncertain in-
puts x to the model. For the functional cardiac
models that motivated this work, neither f nor
p possess a closed-form and evaluation of ei-
ther requires ≈ 100 CPU hours, precluding stan-
dard numerical integration methods.

Motivation

Recall that the standard Monte Carlo confidence in-
terval for an integral(

f̄ − t∗ s√
n
, f̄ + t∗

s√
n

)
(1)

can fail in an arbitrarily dramatic manner when n is
small [1]:
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Figure 1:Consider drawing samples {xi}ni=1 from p(dx) and com-
puting an (asymptotic) 50% confidence interval (Eqn. 1) for∫
f (x)p(dx) based on the data {f (xi)}ni=1. The figure shows

that it is trivial to construct an example for which Eqn. 1 is
severely over-confident.

Building Blocks

Our aim is to use additional prior information in the
construction of the confidence interval.
Gaussian Process f ∼ GP(m, k)

...
f (xi)

...

 ∼ N




...
m(xi)

...

 ,


...
. . . k(xi, xj) . . .

...




Dirichlet Process P ∼ DP(α, Pb)
[P (S1), . . . , P (Sn)] ∼ Dir(αPb(S1), . . . , αPb(Sn))

for a partition Ω = ∪̇ni=1Si.

DP Mixture Model p ∼ DPMM(ψ, α, Pb)
p(dx) =

∫
Ω
ψ(dx;φ)P (dφ)

where e.g. ψ(x;φ) is the p.d.f. for N(φ1, φ2).

Compatible (k, ψ) Pairs

Result from Bayesian quadrature [2]:∫
fdp | p, {(xi, f (xi))}ni=1 ∼ N(µn, σ2

n)
where (e.g.) the mean can be expressed:

µn = [...
∫
k(·, xi)dp...]


...

... k(xi, xj) ...
...


−1 

...
f (xi)

...


Stick-breaking for DPMM [3]:

p(dx) =
∞∑
j=1

wjψ(dx;ϕj)

where the wj and ϕj can be sampled.
Thus required to have a closed-form for the integral:∫

Ω
k(·, xi)dp =

∞∑
j=1

wj
∫

Ω
k(x, xi)ψ(x;ϕj)dx

Method in a Nutshell

Take independent priors f ∼ GP(m, k) a Gaussian process and p ∼ DPMM(ψ, α, Pb) a Dirich-
let process mixture model. Then form a posterior (f, p)|{(xi, f (xi))}ni=1 and extract the marginal∫
fdp |{(xi, f (xi))}ni=1. The latter provides our model for integration error, which contracts at O(n−1/4).

Mathematical Section

Let H denote the RKHS with kernel k. Suppose:
1 f belongs to H and k is bounded on Ω× Ω.

Let P0 denote the true mixing distribution. Suppose:
1 ψ(dx;ϕ) = N(dx;ϕ1, ϕ2).
2 P0 has compact support supp(P0) ⊂ R× (σ, σ)
for some fixed σ, σ ∈ (0,∞).

3 Pb has positive, continuous density on a rectangle
R, s.t. supp(Pb) ⊆ R ⊆ R× [σ, σ].

4 Pb({(ϕ1, ϕ2) : |ϕ1| > t}) ≤ c exp(−γ|t|δ) for
some γ, δ > 0 and ∀ t > 0.

Denote with Pn the posterior marginal over ∫ fdp
given {(xi, f (xi))}ni=1.
Then for all δ > 0, Pn[(p0(f0) − δ, p0(f0) + δ)] =
1 − OP (n−1/4+ε) where the constant ε > 0 can be
arbitrarily small.

Application to a Cardiac Model

Figure 2:Computational cardiac model. This multi-scale, multi-
physics model contains 10 input parameters which, for assess-
ment purposes, must be integrated out.

Conclusion

The use of prior information can help to avoid over-
confidence in numerical estimation of an integral.
However, the performance of our Dirichlet process
mixture Bayesian quadrature (DPMBQ) method de-
pends critically on the appropriateness of the prior
model.
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