Probabilistic Numerical Methods

Chris. J. Oates
Newcastle University
Alan Turing Institute

June 2017 @ Dobbiaco

Download link: oates.work/dobbiaco

Conspirators

Mark Girolami Imperial \& ATI

Philipp Hennig MPI Tuebingen

Jon Cockayne Warwick

Mike Osborne Oxford

F-X Briol Warwick

Dino Sejdinovic Oxford

Tim Sullivan F.U. Berlin

Andrew Stuart Caltech

Motivation: Computational Pipelines

Numerical analysis for the "drag and drop" era of computational pipelines:

[Fig: IBM High Performance Computation]
The sophistication and scale of modern computer models creates an urgent need to better understand the propagation and accumulation of numerical error within arbitrary - often large - pipelines of computation, so that "numerical risk" to end-users can be controlled.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } D \\
& \text { on } \partial D
\end{aligned}
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } D \\
& \text { on } \partial D
\end{aligned}
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\text { in } D
$$

$$
\text { on } \partial D
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

is satisfied" (to be formalised).
\Rightarrow Principled and general uncertainty quantification for numerical methods.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

The Agenda

Part I

(1) First Job: Elicit the Abstract Structure
(2) Second Job: Review of Classical Numerical Analysis
(3) Third Job: Discuss Choice of P_{x}

Part II

(9) Fourth Job: Check Well-Defined, Existence and Uniqueness
(5) Fifth Job: Algorithms to Access $P_{x \mid a}$

Part III

(9) Sixth Job: Analysis of the Gaussian Case
(3) Seventh Job: Solution of Integrals, in Detail

The Agenda

Part IV

(9) Eighth Job: Solution of PDEs
(6) Ninth Job: Characterise Optimal Information

Part V

(9) Tenth Job: Extension to More Challenging Integrals
(5) Eleventh Job: Non-Bayesian Methods?

Part VI

(9) Twelfth Job: Introduction to Graphical Models
(3) Thirteenth Job: Pipelines of Computation

Part I

History of Probabilistic Numerical Methods

Tests of Probabilistic Models for Propagation of Roundoff Errors
T. E. HULL, University of Toronto; J. R. SWENSON, New York University (Ed: J. Traub)

Communications of the ACM, 9(2):108-113, 1966.
In any prolonged computation it is generally assumed that the accumulated effect of roundoff errors is in some sense statistical. The purpose of this paper is to give precise descriptions of certain probabilistic models for roundoff error, and then to describe a series of experiments for testing the validity of these models. It is concluded that the models are in general very good. Discrepancies are both rare and mild. The test techniques can also be used to experiment with various types of special arithmetic.

History of Probabilistic Numerical Methods

Tests of Probabilistic Models for Propagation of Roundoff Errors
T. E. HULL, University of Toronto; J. R. SWENSON, New York University (Ed: J. Traub)

Communications of the ACM, 9(2):108-113, 1966.
In any prolonged computation it is generally assumed that the accumulated effect of roundoff errors is in some sense statistical. The purpose of this paper is to give precise descriptions of certain probabilistic models for roundoff error, and then to describe a series of experiments for testing the validity of these models. It is concluded that the models are in general very good. Discrepancies are both rare and mild. The test techniques can also be used to experiment with various types of special arithmetic.

First Job: Elicit the Abstract Structure

Abstract Structure

Abstractly, consider an unobserved state variable $x \in \mathcal{X}$ together with:

- A quantity of interest, denoted $Q(x) \in \mathcal{Q}$
- An information operator, denoted $x \mapsto A(x) \in \mathcal{A} .(\operatorname{dim}(\mathcal{A})=n<\infty)$

Examples:

Abstract Structure

Abstractly, consider an unobserved state variable $x \in \mathcal{X}$ together with:

- A quantity of interest, denoted $Q(x) \in \mathcal{Q}$
- An information operator, denoted $x \mapsto A(x) \in \mathcal{A} .(\operatorname{dim}(\mathcal{A})=n<\infty)$

Examples:

Task	$Q(x)$	$A(x)$
Integration	$\int x(t) \nu(\mathrm{d} t)$	$\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}$
Optimisation	$\arg \max x(t)$	$\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}$
Solution of Poisson Eqn	$x(\cdot)$	$\left\{-\Delta x\left(t_{i}\right)\right\}_{i=1}^{m} \cup\left\{x\left(t_{i}\right)\right\}_{i=m+1}^{n}$

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output		$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output		$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output		$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $T_{\#} \mu$ denote the "pushforward" measure, st $\left(T_{\#} \mu\right)(S)=\mu\left(T^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output		$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

The Grand Plan

The grand plan of these lectures is to study the object

$$
B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}
$$

of a Bayesian probabilistic numerical method in detail.

But, before we jump in, we will first review some background on classical numerical analysis and information-based complexity of numerical methods.

The Grand Plan

The grand plan of these lectures is to study the object

$$
B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}
$$

of a Bayesian probabilistic numerical method in detail.

But, before we jump in, we will first review some background on classical numerical analysis and information-based complexity of numerical methods.

Second Job: Review of Classical Numerical Analysis

Assessment of Numerical Methods

Consider a (classical) numerical method

$$
b: \mathcal{A} \rightarrow \mathcal{Q}
$$

for instance the trapezoidal rule

$$
b\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}\right)=\sum_{i=1}^{n-1}\left(t_{i+1}-t_{i}\right) \frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{2}
$$

In what sense should the performance of this method be assessed?
Typical considerations in numerical analysis:
(1) Order of convergence
(2) Numerical stability (e.g. floating point error propagation)

In the case of the trapezoidal rule, these are fairly dull.

Assessment of Numerical Methods

Consider a (classical) numerical method

$$
b: \mathcal{A} \rightarrow \mathcal{Q}
$$

for instance the trapezoidal rule

$$
b\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}\right)=\sum_{i=1}^{n-1}\left(t_{i+1}-t_{i}\right) \frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{2}
$$

In what sense should the performance of this method be assessed?
Typical considerations in numerical analysis:
(1) Order of convergence
(2) Numerical stability (e.g. floating point error propagation)

In the case of the trapezoidal rule, these are fairly dull.

Assessment of Numerical Methods

Consider a (classical) numerical method

$$
b: \mathcal{A} \rightarrow \mathcal{Q}
$$

for instance the trapezoidal rule

$$
b\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}\right)=\sum_{i=1}^{n-1}\left(t_{i+1}-t_{i}\right) \frac{x\left(t_{i+1}\right)-x\left(t_{i}\right)}{2}
$$

In what sense should the performance of this method be assessed?
Typical considerations in numerical analysis:
(1) Order of convergence
(2) Numerical stability (e.g. floating point error propagation)

In the case of the trapezoidal rule, these are fairly dull.

Information Based Complexity

Perhaps more interesting questions are raised in Information-Based Complexity:
Three core frameworks of information-based complexity:
(1) "Worst-case" (minimise the maximal error)
(2) "Average-case" (minimise the average error)
© "Probabilistic" (minimise the cost required to achieve low error with high probability)
N.B. The third framework has (arguably) little to do with Probabilistic Numerics (as we will see in Part IV). But, to avoid confusion of the terminology, we won't discuss this framework further.

Information Based Complexity

Perhaps more interesting questions are raised in Information-Based Complexity:
Three core frameworks of information-based complexity:
(1) "Worst-case" (minimise the maximal error)
(2) "Average-case" (minimise the average error)
(3) "Probabilistic" (minimise the cost required to achieve low error with high probability)
N.B. The third framework has (arguably) little to do with Probabilistic Numerics (as we will see in Part IV). But, to avoid confusion of the terminology, we won't discuss this framework further.

Information Based Complexity

Perhaps more interesting questions are raised in Information-Based Complexity:
Three core frameworks of information-based complexity:
(1) "Worst-case" (minimise the maximal error)
(2) "Average-case" (minimise the average error)
(3) "Probabilistic" (minimise the cost required to achieve low error with high probability)
N.B. The third framework has (arguably) little to do with Probabilistic Numerics (as we will see in Part IV). But, to avoid confusion of the terminology, we won't discuss this framework further.

Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space $(\mathcal{X},\|\cdot\| \mathcal{X})$ and introduce a loss function $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$.

Then define the worst case error of the method $M=(A, b)$:

Can consider minimisation of ewce (M) over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

```
arg inf ewce(M)
b:\mathcal{A}->&
```

Such methods are "worst case optimal" for the given information operator A.
e.g. for $\|x\| x=\left(\int x(t)^{2} d t\right)^{1 / 2}$ and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is worst case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space $(\mathcal{X},\|\cdot\| \mathcal{X})$ and introduce a loss function $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$.

Then define the worst case error of the method $M=(A, b)$:

$$
\operatorname{eWCE}(M)=\sup _{\|x\| \mathcal{X} \leq 1} L(b(A(x)), Q(x))
$$

Can consider minimisation of ewce (M) over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$: arginf ewce(M)

Such methods are "worst case optimal" for the given information operator A.
e.g. for $\|x\| x=\left(\int x(t)^{2} d t\right)^{1 / 2}$ and $L^{\prime}\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is worst case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space $(\mathcal{X},\|\cdot\| \mathcal{X})$ and introduce a loss function $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$.

Then define the worst case error of the method $M=(A, b)$:

$$
\operatorname{ewCE}(M)=\sup _{\|x\|_{\mathcal{X}} \leq 1} L(b(A(x)), Q(x))
$$

Can consider minimisation of ewce (M) over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } \operatorname{ewce}(M)
$$

Such methods are "worst case optimal" for the given information operator A.
e.g. for $\|x\| x=\left(\int x(t)^{2} d t\right)^{1 / 2}$ and $L^{\prime}\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is worst case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space $(\mathcal{X},\|\cdot\| \mathcal{X})$ and introduce a loss function $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$.

Then define the worst case error of the method $M=(A, b)$:

$$
\operatorname{eWCE}(M)=\sup _{\|x\| \mathcal{X} \leq 1} L(b(A(x)), Q(x))
$$

Can consider minimisation of ewce (M) over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } \operatorname{ewce}(M)
$$

Such methods are "worst case optimal" for the given information operator A.

Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space ($\mathcal{X},\|\cdot\| \mathcal{X}$) and introduce a loss function $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$.

Then define the worst case error of the method $M=(A, b)$:

$$
\operatorname{ewCE}(M)=\sup _{\|x\|_{\mathcal{X}} \leq 1} L(b(A(x)), Q(x))
$$

Can consider minimisation of ewce (M) over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } \operatorname{ewCE}(M)
$$

Such methods are "worst case optimal" for the given information operator A.
e.g. for $\|x\|_{\mathcal{X}}=\left(\int x(t)^{2} \mathrm{~d} t\right)^{1 / 2}$ and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is worst case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ and introduce a distribution $P_{x} \in \mathcal{P}_{\mathcal{X}}$.

Then define the average case error of the method $M=(A, b)$)

Can consider minimisation of $e_{\text {ACE }}(M)$ over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

Such methods are "average case optimal" for the information operator A.
e.g. for P_{x} the Weiner process and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is average case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ and introduce a distribution $P_{x} \in \mathcal{P}_{\mathcal{X}}$.

Then define the average case error of the method $M=(A, b)$:

$$
e_{\mathrm{ACE}}(M)=\int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

Can consider minimisation of $e_{\text {ACE }}(M)$ over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

Such methods are "average case optimal" for the information operator A
e.g. for P_{x} the Weiner process and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is average case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV)

Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ and introduce a distribution $P_{x} \in \mathcal{P}_{\mathcal{X}}$.

Then define the average case error of the method $M=(A, b)$:

$$
e_{\mathrm{ACE}}(M)=\int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

Can consider minimisation of $e_{\mathrm{ACE}}(M)$ over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } e_{\mathrm{ACE}}(M)
$$

Such methods are "average case optimal" for the information operator A
e.g. for P_{x} the Weiner process and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is average case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV)

Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ and introduce a distribution $P_{x} \in \mathcal{P}_{\mathcal{X}}$.

Then define the average case error of the method $M=(A, b)$:

$$
e_{\mathrm{ACE}}(M)=\int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

Can consider minimisation of $e_{\mathrm{ACE}}(M)$ over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } e_{\mathrm{ACE}}(M)
$$

Such methods are "average case optimal" for the information operator A.
e.g. for P_{x} the Weiner process and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is average case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV)

Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ and introduce a distribution $P_{x} \in \mathcal{P}_{\mathcal{X}}$.

Then define the average case error of the method $M=(A, b)$:

$$
e_{\mathrm{ACE}}(M)=\int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

Can consider minimisation of $e_{\mathrm{ACE}}(M)$ over the choice of $b: \mathcal{A} \rightarrow \mathcal{Q}$:

$$
\underset{b: \mathcal{A} \rightarrow \mathcal{Q}}{\arg \inf } e_{A C E}(M)
$$

Such methods are "average case optimal" for the information operator A.
e.g. for P_{x} the Weiner process and $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, the trapezium rule is average case optimal for $A(x)=\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right]$ (modulo technical details - see Part IV).

Questions

Coincidence that the trapezoidal rule is both worst case optimal and average case optimal?

Closely related to Probabilistic Numerics?

Well, both involve a choice for P_{x} at least.

Questions

Coincidence that the trapezoidal rule is both worst case optimal and average case optimal?

Closely related to Probabilistic Numerics?

Well, both involve a choice for P_{x} at least.

Questions

Coincidence that the trapezoidal rule is both worst case optimal and average case optimal?

Closely related to Probabilistic Numerics?

Well, both involve a choice for P_{x} at least...

Third Job: Discuss Choice of P_{x}

Prior Construction

Motivation: Beyond Gaussian Processes
Let $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all $i \in \mathbb{N}$.

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$.

Question 1: How to select the basis elements ϕ_{i} ?

Question 2: How to select the distribution of the coefficients α_{i} ?

Prior Construction

Motivation: Beyond Gaussian Processes
Let $(\mathcal{X},\|\cdot\| \mathcal{X})$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

$$
x(\cdot)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(\cdot)
$$

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$

Question 1: How to select the basis elements ϕ_{i} ?
Question 2: How to select the distribution of the coefficients α_{i} ?

Prior Construction

Motivation: Beyond Gaussian Processes
Let $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

$$
x(\cdot)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(\cdot)
$$

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all $i \in \mathbb{N}$.

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$

Question 1: How to select the basis elements ϕ_{i} ?

Question 2: How to select the distribution of the coefficients α_{i} ?

Prior Construction

Motivation: Beyond Gaussian Processes
Let $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

$$
x(\cdot)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(\cdot)
$$

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all $i \in \mathbb{N}$.

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$.

Question 1: How to select the basis elements ϕ_{i} ?
Question 2: How to select the distribution of the coefficients α_{i} ?

Prior Construction

Motivation: Beyond Gaussian Processes
Let $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

$$
x(\cdot)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(\cdot)
$$

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all $i \in \mathbb{N}$.

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$.

Question 1: How to select the basis elements ϕ_{i} ?
Question 2: How to select the distribution of the coefficients α_{i} ?

Prior Construction

Motivation: Beyond Gaussian Processes
Let $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be a Banach space (i.e. a complete normed vector space; in this case over \mathbb{R}) equipped with a Schauder basis $\left\{\phi_{i}\right\}_{i=1}^{\infty}$. i.e. for each $x \in \mathcal{X}$ there exists a unique sequence $\alpha \in \mathbb{R}^{\infty}$ such that

$$
x(\cdot)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(\cdot)
$$

It will be further assumed that the basis is normalised, meaning that $\left\|\phi_{i}\right\|_{\mathcal{X}}=1$ for all $i \in \mathbb{N}$.

Key Idea: Randomise the coefficients $\alpha \sim P_{\omega}$ and consider the push-forward $P_{x}=T_{\#} P_{\omega}$ where $T \alpha=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$.

Question 1: How to select the basis elements ϕ_{i} ?
Question 2: How to select the distribution of the coefficients α_{i} ?

Selection of Basis Elements ϕ_{i}

Some insight is provided in the case where \mathcal{X} is a reproducing kernel Hilbert space (see Part III) by Mercer's theorem:

Let $k\left(t, t^{\prime}\right)$ be a symmetric positive definite kernel on \mathcal{X}. If

then there exist $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset L^{2}(\nu)$ and $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subset[0, \infty)$ such that

Moreover the $\left\{\lambda_{i}^{1 / 2} \psi_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathcal{X}.
So could, for instance, use $\phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ to build a Schauder basis for \mathcal{X}.
But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only assume that we are provided with a normalised Schauder basis.

Selection of Basis Elements ϕ_{i}

Some insight is provided in the case where \mathcal{X} is a reproducing kernel Hilbert space (see Part III) by Mercer's theorem:

Let $k\left(t, t^{\prime}\right)$ be a symmetric positive definite kernel on \mathcal{X}. If

$$
\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty
$$

then there exist $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset L^{2}(\nu)$ and $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subset[0, \infty)$ such that

$$
k\left(t, t^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(t) \psi_{i}\left(t^{\prime}\right) \quad(\text { "kernel trick" })
$$

Moreover the $\left\{\lambda_{i}^{1 / 2} \psi_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathcal{X}.
So could, for instance, use $\phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ to build a Schauder basis for \mathcal{X}.

But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only assume that we are provided with a normalised Schauder basis.

Selection of Basis Elements ϕ_{i}

Some insight is provided in the case where \mathcal{X} is a reproducing kernel Hilbert space (see Part III) by Mercer's theorem:

Let $k\left(t, t^{\prime}\right)$ be a symmetric positive definite kernel on \mathcal{X}. If

$$
\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty
$$

then there exist $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset L^{2}(\nu)$ and $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subset[0, \infty)$ such that

$$
k\left(t, t^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(t) \psi_{i}\left(t^{\prime}\right) \quad(\text { "kernel trick" })
$$

Moreover the $\left\{\lambda_{i}^{1 / 2} \psi_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathcal{X}.
So could, for instance, use $\phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ to build a Schauder basis for \mathcal{X}.
But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only assume that we are provided with a normalised Schauder basis.

Selection of Basis Elements ϕ_{i}

Some insight is provided in the case where \mathcal{X} is a reproducing kernel Hilbert space (see Part III) by Mercer's theorem:

Let $k\left(t, t^{\prime}\right)$ be a symmetric positive definite kernel on \mathcal{X}. If

$$
\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty
$$

then there exist $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset L^{2}(\nu)$ and $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subset[0, \infty)$ such that

$$
k\left(t, t^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(t) \psi_{i}\left(t^{\prime}\right) \quad(\text { "kernel trick" }) .
$$

Moreover the $\left\{\lambda_{i}^{1 / 2} \psi_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathcal{X}.
So could, for instance, use $\phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ to build a Schauder basis for \mathcal{X}.

But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only assume that we are provided with a normalised Schauder basis.

Selection of Basis Elements ϕ_{i}

Some insight is provided in the case where \mathcal{X} is a reproducing kernel Hilbert space (see Part III) by Mercer's theorem:

Let $k\left(t, t^{\prime}\right)$ be a symmetric positive definite kernel on \mathcal{X}. If

$$
\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty
$$

then there exist $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset L^{2}(\nu)$ and $\left\{\lambda_{i}\right\}_{i=1}^{\infty} \subset[0, \infty)$ such that

$$
k\left(t, t^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(t) \psi_{i}\left(t^{\prime}\right) \quad \text { ("kernel trick"). }
$$

Moreover the $\left\{\lambda_{i}^{1 / 2} \psi_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathcal{X}.
So could, for instance, use $\phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ to build a Schauder basis for \mathcal{X}.
But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only assume that we are provided with a normalised Schauder basis.

Distribution of the Coefficients α_{i}

Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a (normalised) Schauder basis.
Consider a decomposition
where γ_{i} are fixed and u_{i} are random; independent and identically distributed.
When does the summation

converge in $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$?
NB: The Karhunen-Loève expansion corresponds to $\gamma_{i} \equiv 1, \phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ and $u_{i} \sim N(0,1)$. This clearly does not converge in $(\mathcal{X},\|\cdot\| \mathcal{X})$!

Distribution of the Coefficients α_{i}

Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a (normalised) Schauder basis.

Consider a decomposition

$$
\alpha_{i}=\gamma_{i} u_{i}
$$

where γ_{i} are fixed and u_{i} are random; independent and identically distributed.

When does the summation

converge in $(\mathcal{X},\|\cdot\| \mathcal{X})$?

NB: The Karhunen-Loève expansion corresponds to $\gamma_{i} \equiv 1, \phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ and $u_{i} \sim N(0,1)$. This clearly does not converge in $(\mathcal{X},\|\cdot\| \mathcal{X})$!

Distribution of the Coefficients α_{i}

Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a (normalised) Schauder basis.

Consider a decomposition

$$
\alpha_{i}=\gamma_{i} u_{i}
$$

where γ_{i} are fixed and u_{i} are random; independent and identically distributed.
When does the summation

$$
\sum_{i=1}^{\infty} \alpha_{i} \phi_{i} \quad\left(=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}\right)
$$

converge in $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$?
NB: The Karhunen-Loève expansion corresponds to $\gamma_{i} \equiv 1, \phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ and $u_{i} \sim N(0,1)$. This clearly does not converge in $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$!

Distribution of the Coefficients α_{i}

Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a (normalised) Schauder basis.

Consider a decomposition

$$
\alpha_{i}=\gamma_{i} u_{i}
$$

where γ_{i} are fixed and u_{i} are random; independent and identically distributed.
When does the summation

$$
\sum_{i=1}^{\infty} \alpha_{i} \phi_{i} \quad\left(=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}\right)
$$

converge in $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$?
NB: The Karhunen-Loève expansion corresponds to $\gamma_{i} \equiv 1, \phi_{i}=\lambda_{i}^{1 / 2} \psi_{i}$ and $u_{i} \sim N(0,1)$. This clearly does not converge in $(\mathcal{X},\|\cdot\| \mathcal{X})$!

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$\Longrightarrow\left(x^{N}\right)_{N=1}^{\infty}$ Cauchy \Longrightarrow converges to a limit in the Banach space \mathcal{X}.

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$\Longrightarrow\left(x^{N}\right)_{N=1}^{\infty}$ Cauchy \Longrightarrow converges to a limit in the Banach space \mathcal{X}.

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
(N>M) \quad\left\|x^{N}-x^{M}\right\|_{\mathcal{X}}=\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}}
$$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
\begin{aligned}
(N>M)\left\|x^{N}-x^{M}\right\|_{\mathcal{X}} & =\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}} \\
& \leq \sum_{i=M+1}^{N}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =\sum_{i=M+1}^{N}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p 1}
\end{aligned}
$$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
\begin{aligned}
(N>M)\left\|x^{N}-x^{M}\right\| \mathcal{X} & =\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}} \\
& \leq \sum_{i=M+1}^{N}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =\sum_{i=M+1}^{N}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p 1}
\end{aligned}
$$

$$
\Longrightarrow\left(x^{N}\right)_{N=1}^{\infty} \text { Cauchy } \Longrightarrow \text { converges to a limit in the Banach space } \mathcal{X} .
$$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
\begin{aligned}
(N>M)\left\|x^{N}-x^{M}\right\|_{\mathcal{X}} & =\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}} \\
& \leq \sum_{i=M+1}^{N}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =\sum_{i=M+1}^{N}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p 1} \\
& =\sum_{i=M+1}^{\infty}\left|\gamma_{i}\right| \rightarrow 0 \text { as } M \rightarrow \infty \quad\left(\text { def'n of } \ell^{1}\right)
\end{aligned}
$$

$\Longrightarrow\left(x^{N}\right)_{N=1}^{\infty}$ Cauchy \Longrightarrow converges to a limit in the Banach space \mathcal{X}

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
\begin{aligned}
&(N>M)\left\|x^{N}-x^{M}\right\|_{\mathcal{X}}=\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}} \\
& \leq \sum_{i=M+1}^{N}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
&=\sum_{i=M+1}^{N}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p 1} \\
&=\sum_{i=M+1}^{\infty}\left|\gamma_{i}\right| \rightarrow 0 \text { as } M \rightarrow \infty \quad\left(\text { def'n of } \ell^{1}\right) \\
& \Longrightarrow\left(x^{N}\right)_{N=1}^{\infty} \text { Cauchy } \longrightarrow \text { converges to a limit in the Banach space } \mathcal{X} .
\end{aligned}
$$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Well-defined? Let $x^{N}=\sum_{i=1}^{N} \alpha_{i} \phi_{i}$.

$$
\begin{aligned}
(N>M)\left\|x^{N}-x^{M}\right\|_{\mathcal{X}} & =\left\|\sum_{i=M+1}^{N} \alpha_{i} \phi_{i}\right\|_{\mathcal{X}} \\
& \leq \sum_{i=M+1}^{N}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =\sum_{i=M+1}^{N}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p 1} \\
& =\sum_{i=M+1}^{\infty}\left|\gamma_{i}\right| \rightarrow 0 \text { as } M \rightarrow \infty \quad\left(\text { def'n of } \ell^{1}\right)
\end{aligned}
$$

$\Longrightarrow\left(x^{N}\right)_{N=1}^{\infty}$ Cauchy \Longrightarrow converges to a limit in the Banach space \mathcal{X}.

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\| x=\|x\| \infty=\sup _{t}|x(t)|$. Then we
have that

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

$$
x(t) \geq-\sum_{i=1}^{\infty}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\| \mathcal{X}}_{=1}
$$

- Similarly $x(t) \leq\|\gamma\|_{1}$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

$$
\begin{aligned}
x(t) & \geq-\sum_{i=1}^{\infty}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq \rho 1}
\end{aligned}
$$

$$
\geq-\sum_{i=1}^{\infty}\left|\gamma_{i}\right|
$$

- Similarly $x(t) \leq\|\gamma\|_{1}$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

$$
\begin{aligned}
x(t) & \geq-\sum_{i=1}^{\infty}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\| \mathcal{X}}_{=1} \\
& =-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq_{P} 1} \\
& \geq-\sum_{i=1}^{\infty}\left|\gamma_{i}\right|
\end{aligned}
$$

- Similarly $x(t) \leq\|\gamma\|_{1}$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

$$
\begin{aligned}
x(t) & \geq-\sum_{i=1}^{\infty}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p_{1}} \\
& \geq-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \\
& =-\|\gamma\|_{1}<\infty \quad\left(\text { def'n of } \ell^{1}\right) .
\end{aligned}
$$

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Boundedness: Consider the specific choice $\|x\|_{\mathcal{X}}=\|x\|_{\infty}=\sup _{t}|x(t)|$. Then we have that

$$
\begin{aligned}
x(t) & \geq-\sum_{i=1}^{\infty}\left|\alpha_{i}\right| \underbrace{\left\|\phi_{i}\right\|_{\mathcal{X}}}_{=1} \\
& =-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \underbrace{\left|u_{i}\right|}_{\leq p_{1}} \\
& \geq-\sum_{i=1}^{\infty}\left|\gamma_{i}\right| \\
& =-\|\gamma\|_{1}<\infty \quad\left(\text { def'n of } \ell^{1}\right) .
\end{aligned}
$$

- Similarly $x(t) \leq\|\gamma\|_{1}$.

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Distribution of marginals:

Fix t. Then

but note that it is bounded (unlike, e.g. for a Gaussian process).

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Distribution of marginals: Fix t. Then

$$
x(t)=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(t)
$$

but note that it is bounded (unlike, e.g. for a Gaussian process).

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Distribution of marginals: Fix t. Then

$$
\begin{aligned}
x(t) & =\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(t) \\
& =\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} \underbrace{\left[\gamma_{i} \phi_{i}(t)\right]}_{\text {weight }} \underbrace{u_{i}}_{\sim U[-1,1]} \\
& \sim \text { "weighted Irwin-Hall" }
\end{aligned}
$$

but note that it is bounded (unlike, e.g. for a Gaussian process)

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Distribution of marginals: Fix t. Then

$$
\begin{aligned}
x(t) & =\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(t) \\
& =\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}(t) \\
& =\sum_{i=1}^{\infty} \underbrace{\left[\gamma_{i} \phi_{i}(t)\right]}_{\text {weight }} \underbrace{u_{i}}_{\sim U[-1,1]}
\end{aligned}
$$

but note that it is bounded (unlike, e.g. for a Gaussian process)

Distribution of the Coefficients $\alpha_{i}=\gamma_{i} u_{i}$

Example: The uniform prior takes $\gamma \in \ell^{1}$ and $u_{i} \sim U[-1,1]$.

- Distribution of marginals: Fix t. Then

$$
\begin{aligned}
x(t) & =\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}(t) \\
& =\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}(t) \\
& =\sum_{i=1}^{\infty} \underbrace{\left[\gamma_{i} \phi_{i}(t)\right]}_{\text {weight }} \underbrace{u_{i}}_{\sim U[-1,1]} \\
& \sim \text { "weighted Irwin-Hall" }
\end{aligned}
$$

but note that it is bounded (unlike, e.g. for a Gaussian process).

Exercise: The Gaussian Case

Example: Consider functions $x: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The Gaussian prior has coefficients $\alpha_{i}=\gamma_{i} \boldsymbol{u}_{i}$ where $\gamma_{i} \asymp i^{-\frac{s}{d}}$ and $u_{i} \sim N(0,1)$, for some $s>0$.

- Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be orthonormal in a Hilbert space $(\mathcal{X},\|\cdot\| \mathcal{X})$.
- Let $x=\sum_{i=1}^{\infty} \alpha_{i} \phi_{;}$and consider a norm $\|x\|_{v,+}^{2}=\sum_{i=1}^{\infty} i^{\frac{2 t}{d}} \alpha_{i}^{2}$ for some $t>0$. (This is known as a "Hilbert scale" of \mathcal{X}.)
- Question: For which values of s, t does $x=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}$ exist as a $L_{P}^{2}(\mathcal{X},\|\cdot\| \mathcal{X}, t)$ limit?
- i.e. For which values of s, t is $\mathbb{E}\left[\|x\|_{X, t}^{2}\right]<\infty$?

Exercise: The Gaussian Case

Example: Consider functions $x: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The Gaussian prior has coefficients $\alpha_{i}=\gamma_{i} \boldsymbol{u}_{i}$ where $\gamma_{i} \asymp i^{-\frac{s}{d}}$ and $u_{i} \sim N(0,1)$, for some $s>0$.

- Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be orthonormal in a Hilbert space $(\mathcal{X},\|\cdot\| \mathcal{X})$.
- Let $x=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$ and consider a norm $\|x\|_{\mathcal{X}, t}^{2}=\sum_{i=1}^{\infty} i^{\frac{2 t}{d}} \alpha_{i}^{2}$ for some $t>0$. (This is known as a "Hilbert scale" of \mathcal{X}.)
- Question: For which values of s, t does $x=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}$ exist as a $L_{p}^{2}\left(\mathcal{X},\|\cdot\| X_{X}, t\right)$ limit?
- i.e. For which values of s, t is $\mathbb{E}\left[\|x\|_{\mathcal{X}, t}^{2}\right]<\infty$?

Exercise: The Gaussian Case

Example: Consider functions $x: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The Gaussian prior has coefficients $\alpha_{i}=\gamma_{i} \boldsymbol{u}_{i}$ where $\gamma_{i} \asymp i^{-\frac{s}{d}}$ and $u_{i} \sim N(0,1)$, for some $s>0$.

- Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be orthonormal in a Hilbert space $(\mathcal{X},\|\cdot\| \mathcal{X})$.
- Let $x=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$ and consider a norm $\|x\|_{\mathcal{X}, t}^{2}=\sum_{i=1}^{\infty} i^{\frac{2 t}{d}} \alpha_{i}^{2}$ for some $t>0$. (This is known as a "Hilbert scale" of \mathcal{X}.)
- Question: For which values of s, t does $x=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}$ exist as a $L_{P}^{2}(\mathcal{X},\|\cdot\| \mathcal{X}, t)$ limit?

Exercise: The Gaussian Case

Example: Consider functions $x: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The Gaussian prior has coefficients $\alpha_{i}=\gamma_{i} u_{i}$ where $\gamma_{i} \asymp i^{-\frac{s}{d}}$ and $u_{i} \sim N(0,1)$, for some $s>0$.

- Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be orthonormal in a Hilbert space $(\mathcal{X},\|\cdot\| \mathcal{X})$.
- Let $x=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$ and consider a norm $\|x\|_{\mathcal{X}, t}^{2}=\sum_{i=1}^{\infty} i^{\frac{2 t}{d}} \alpha_{i}^{2}$ for some $t>0$. (This is known as a "Hilbert scale" of \mathcal{X}.)
- Question: For which values of s, t does $x=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}$ exist as a $L_{P}^{2}\left(\mathcal{X},\|\cdot\|_{\mathcal{X}, t}\right)$ limit?

Exercise: The Gaussian Case

Example: Consider functions $x: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The Gaussian prior has coefficients $\alpha_{i}=\gamma_{i} u_{i}$ where $\gamma_{i} \asymp i^{-\frac{s}{d}}$ and $u_{i} \sim N(0,1)$, for some $s>0$.

- Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be orthonormal in a Hilbert space $(\mathcal{X},\|\cdot\| \mathcal{X})$.
- Let $x=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i}$ and consider a norm $\|x\|_{\mathcal{X}, t}^{2}=\sum_{i=1}^{\infty} i^{\frac{2 t}{d}} \alpha_{i}^{2}$ for some $t>0$. (This is known as a "Hilbert scale" of \mathcal{X}.)
- Question: For which values of s, t does $x=\sum_{i=1}^{\infty} \gamma_{i} u_{i} \phi_{i}$ exist as a $L_{P}^{2}\left(\mathcal{X},\|\cdot\|_{\mathcal{X}, t}\right)$ limit?
- i.e. For which values of s, t is $\mathbb{E}\left[\|x\|_{\mathcal{X}, t}^{2}\right]<\infty$?

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- This enables us to go beyond Gaussian processes - but demands additional technical details.

END OF PART I

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- This enables us to go beyond Gaussian processes - but demands additional technical details.

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- This enables us to go beyond Gaussian processes - but demands additional technical details.

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- This enables us to go beyond Gaussian processes - but demands additional technical details.

END OF PART I

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- This enables us to go beyond Gaussian processes - but demands additional technical details.

END OF PART I

